ALAN JACKSON

	EXPERIENCE	
CONTACT Address Department of Physics, Astronomy and Geosciences, Science Complex, 8000	2023 –	Assistant Professor Department of Physics, Astronomy and Geosciences, Towson University
York Road, MD 21252, USA Telephone (+1) 410 704 3982	2019 – 2023	Assistant Research Scientist School of Earth and Space Exploration, Arizona State University
E-mail alanjackson@towson.edu	2016 – 2019	CPS Postdoctoral Fellow Centre for Planetary Sciences, Universit of Toronto
Website www.alanjacksonastronomy.com	2014 – 2016	Postdoctoral Research Associate School of Earth and Space Exploration, Arizona State University
33 refereed publications	EDUCATION	
1730 total citations H-index 19 (Google Scholar) Profiles	2010 – 2014	PhD, Institute of Astronomy, University Cambridge Supervisor: Mark Wyatt Thesis title: Debris in planetary systems
Google Scholar:Alan P. JacksonNASA ADS:Alan P. JacksonArXiv:Alan P. Jackson	2006 – 2010	MPhys (Hons), 1st class, Merton Colleg University of Oxford

NASA ADS:	Alan P. Jackson
ArXiv:	Alan P. Jackson
ORCID:	0000-0003-4393-9520

	Centre for Planetary Sciences, University of Toronto
2014 – 2016	Postdoctoral Research Associate School of Earth and Space Exploration, Arizona State University
EDUCATION	
2010 – 2014	 PhD, Institute of Astronomy, University of Cambridge Supervisor: Mark Wyatt Thesis title: Debris in planetary systems
2006 – 2010	MPhys (Hons), 1st class, Merton College, University of Oxford College scholarships: Exhibitioner (2007), Postmaster (2008-2010)
TEACHING	
2023	Instructor for The Sky and the Solar System (ASTR 161) introductory undergraduate course
2015	Instructor for Terrestrial Planet Formation (GLG 598) graduate course
2011 –2013	Supervisor/tutor (groups of 2-3) for Astrophysical Fluid Dynamics Part II (3 rd year undergraduate) course
MENTORING	
2018	Loic Nassif-Lachapelle (undergraduate) – University of Toronto, CPS summer undergraduate fellowship, advisor
2015 – 2017	Viranga Perera (graduate) – Arizona State University, co-advisor now Teaching Professor at UT Austin
2015 – 2019	Travis Gabriel (graduate) – Arizona State

GRANTS/FELLOWSHIPS					
Project/Fellowship	Position	Funding organisation	Award date	Duration	Total funding
TREC: Tracing Rocky Exoplanet Compositions	Co-I (PI S. Desch)	NASA (ICAR)	2023	5 years	\$5.8 million
How do Super-Mercuries form?	Co-I (PI C. Unterborn)	NASA (XRP)	2023	3 years	\$604,000
Debris Disk Variability - Exploring the Diverse Outcomes of Large Collisions during the Eras of Oligarchic and Chaotic Growth II	Collaborator (PI K. Su)	NASA (ADAP)	2020	3 years	\$412,000
Exploration Fellowship	PI	Arizona State University	2019	3 years	\$250,000
Application of Machine Learning to Giant Impact Studies of Planet Formation	Collaborator (PI E. Asphaug)	NASA (EW)	2019	3 years	\$548,000
Debris Disk Variability - Exploring the Diverse Outcomes of Large Collisions during the Eras of Oligarchic and Chaotic Growth	Collaborator (PI K. Su)	NASA (ADAP)	2017	2 years	\$198,000
Stop hitting yourself: did most terrestrial impactors originate from the terrestrial planets?	PI/Science PI	NASA (SSW)	2016	4 years	\$643,000

OBSERVING PROGRAMS

Project	Position	Facility	Award date	Time/time valuation	Support funding
When terrestrial planets collide: imaging the aftermath of an impact in the Solar neighbourhood	Co-I (PI L. Matra)	ALMA	2022	16.2 hrs	-
Probing terrestrial planet formation with extreme disk variability	Co-l (PI K. Su)	Spitzer Space Telescope	2016	120 hrs/ \$258,000	-
Mineralogical evolution in extreme debris disks II	Co-l (PI K. Su)	SOFIA	2016	2.5 hrs	\$32,000
Mineralogical evolution in extreme debris disks	Co-l (PI K. Su)	SOFIA	2015	3.5 hrs	\$38,000
Debris disk variability: observational test bed for probing terrestrial planet formation	Co-I (PI K. Su)	Spitzer Space Telescope	2014	130 hrs/ \$279,500	\$10,000

PROFESSIONAL SERVICE

2022	Session chair at 52 nd Lunar and Planetary Science Conference
2021 – 2023	School of Earth and Space Exploration Inclusive Community Committee
2021 –	Member Vera Rubin Observatory Legacy Survey of Space and Time (LSST) Solar System Science Collaboration (SSSC)
2020 – 2021	Member NASA Nexus for Exoplanet System Science (NExSS) Science Communications Working Group (SCWG)
2018	Dwornik Student Presentation Award judge, 49 th Lunar and Planetary Science Conference
2017	Session chair at 48 th Lunar and Planetary Science Conference
2017 – 2018	Co-convener for CPS lunchtime seminars at University of Toronto, Scarborough
2015 – 2016	Convener for Stars, Planets and Disks discussion group at Arizona State University
2015 – 2020	Member, ASU Nexus for Exoplanet System Science (NExSS) team
2015	Chambliss Student Poster Award judge, 225 th AAS meeting

JOURNAL REVIEWER

The Astrophysical Journal (3),	Nature Astronomy (2),
Computational Astrophysics & Cosmology (1),	Science (1)
Monthly Notices of the Royal Astronomical Society (5),	Icarus (4)
Nature (2),	Journal of Astronomical Instrumentation (1)

GRANT REVIEWER

NASA grant proposals (2 on panel, 5 external), UK Science & Technology Facilities Council (4), Austrian Science Fund (1) European Research Council (1)

MEDIA

Date
2021
2021
2021
2021
2021
2018
2017
2013

PRESS RELEASES

Accompanying the paper Carbon monoxide gas produced by a giant impact in the inner region of a young system: Massachusetts Institute of Technology

Covered by a variety of news organisations including the Daily Mail (UK), Space.com, Newsweek (US)

Accompanying the papers

11/'Oumuamua as an N2 ice fragment of an exo-Pluto surface I: Size and Compositional Constraints, 11/'Oumuamua as an N2 ice fragment of an exo-Pluto surface II: Generation of N2 ice fragments and the origin of 'Oumuamua:

Arizona State University

American Geophysical Union

Widely covered by news organisations in the US and internationally, including in print at the Associated Press (int.), the Guardian (int.), CNN (USA), and the BBC (UK); on radio at CBS News Radio LA (USA), and the BBC World Service (int.); and on television at Al-Jazeera English (int.)

Accompanying the paper

Ejection of rocky and icy material from binary star systems: Implications for the origin and composition of 11/`Oumuamua:

University of Toronto

Royal Astronomical Society

Carried by a variety of news organisations in Canada and internationally, including *The Guardian* (int.), the *Associated Press* (int.), the *Daily Mail* (UK), *CTV News* (Canada) and the *CBC* (Canada)

INVITED CONFERENCE PRESENTATIONS						
	Date	Title	Event	Location		
1)	2021	To see a world in a shard of ice: 'Oumuamua as a fragment of N_2 ice from an exo-Pluto	American Geophysical Union Fall Meeting 2021	New Orleans, USA		
2)	2018	Giant impacts and debris, what we can learn about planet formation	Current and future trends in debris disk science	Victoria, Canada		
3)	2018	Giant Impacts and their relation to Rapidly Evolving Debris Disks	Astrophysical Frontiers in the next decade and beyond	Portland, Oregon, USA		

PUBLICATION LIST

*Student-led publication under my supervision

REFEREED

- 1. Impact generation of holes in the early lunar crust: Scaling relations Jackson A. P., Perera V., Gabriel T.S.J., 2023, Journal of Geophysical Research: Planets, e2022JE007498
- 2. Mercury's formation within the early instability scenario Clement M.S., Chambers J.E., Kaib N.A., Raymond S.N., Jackson A.P., 2023, Icarus, 394, 115445
- 3. Some pertinent issues for interstellar panspermia raised after the discovery of 11/'Oumuamua Desch S.J., Jackson A.P., 2022, Astrobiology, 22(12), 1400-1413
- 4. The breakup of a long-period comet is not a likely match to the Chicxulub impactor Desch S.J., **Jackson A.P.**, Noviello J.L., Anbar A., 2022, Scientific Reports, 12, 10415
- RW Aur A: SpeX spectral evidence for differentiated planetesimal formation, migration and destruction in a ~3 Myr old excited CTTS system
 Lisse C.M., Sitko M.L., Wolk S.J., Günther H.M., Brittain S., Green J.D., Steckloff J., Johnson B., Espaillat C.C., Koutoukali M., Moorman S.Y., Jackson A.P., 2022, Astrophysical Journal, 928, 189
- *6. A star-sized impact-produced dust clump in the terrestrial zone of HD 166191* Su K.Y.L., Kennedy G., Schlawin E., Jackson A.P., Rieke G., 2022, Astrophysical Journal, 927, 135
- CO gas produced by a giant impact in the inner region of a young system Schneiderman T., Matrà L., Jackson A.P., Kennedy G., Kral Q., Marino S., Oberg K., Su K., Wilner D., Wyatt M., 2021, Nature, 598, 425
- 8. Dynamical avenues for Mercury's origin I: The lone survivor of a primordial generation of short-period protoplanets

Clement M.S., Chambers J.E., Jackson A.P., 2021, Astrophysical Journal, 161, 240

- *9.* 11/'Oumuamua as an N₂ ice fragment of an exo-pluto surface I: Size and Compositional Constraints **Jackson A.P.**, Desch S.J., 2021, Journal of Geophysical Research, 126, e2020JE006706
- 11/'Oumuamua as an N₂ ice fragment of an exo-pluto surface II: Generation of N₂ ice fragments and the origin of 'Oumuamua

Desch S.J., Jackson A.P., 2021, Journal of Geophysical Research, 126, e2020JE006807

- Mid-infrared Studies of HD 113766 and HD 172555: Assessing Variability in the Terrestrial Zone of Young Exoplanetary Systems Su K.Y.L., Rieke G.H., Melis C., Jackson A.P., Smith P.S., Meng H.Y.A., Gáspár A., 2020, Astrophysical Journal, 898, 21
- HD 145263: Spectral observations of silica debris disk formation via extreme space weathering? Lisse C.M., Meng H.Y.A., Sitko M.L., Morlok A., Johnson B.C., Jackson A.P., Vervack R.J. Jr., Chen C.H., Wolk S.J., Lucas M.D., Marengo M., Britt D.T., 2020, Astrophysical Journal, 894, 116
- 13. Automated crater shape retrieval using weakly-supervised deep learning Ali-Dib M., Menou K., Jackson A.P., Zhu C., Hammond N., 2020, Icarus, 345, 113749
- *Gravity dominated collisions: a model for largest remnant masses with treatment for 'hit and run' and density stratification
 Gabriel T.S.J., Jackson A.P., Asphaug E., Reufer A., Jutzi M., Benz W., 2020, Astrophysical Journal, 891, 40
- 15. Can a machine learn the outcome of planetary collisions? Valencia D., Paracha E., **Jackson A.P.**, 2019, Astrophysical Journal, 882, 35
- 16. Oort cloud asteroids: collisional evolution, the Nice Model and the Grand Tack Shannon A., Jackson A.P., Wyatt M.C., 2019, Monthly Notices of the Royal Astronomical Society, 485, 5511
- 17. Extreme debris disk variability: exploring the diverse outcomes of large asteroid impacts during the era of terrestrial planet formation

Su K.Y.L, **Jackson A.P.**, Gáspár A., Rieke G.H., Dong R., Olofsson J., Kennedy G.M., Leinhardt Z.M., Malhotra R., Hammer M., Meng H.Y.A., Rujopakarn W., Rodriguez J.E., Pepper J., Reichart D.E., James D., Stassun K.G., 2019, Astronomical Journal, 157, 202

- Lunar crater identification via machine learning
 Silburt A., Ali-Dib M., Chenchong Z., Jackson A.P., Valencia D., Kissin Y., Tamayo D., Menou K., 2019, Icarus, 317, 27
- *Effect of re-impacting debris on the solidification of the lunar magma ocean
 Perera V., Jackson A.P., Elkins-Tanton L.T., Asphaug E., 2018, Journal of Geophysical Research: planets, 123, 1168
- 20. Ejection of rocky and icy material from binary star systems: Implications for the origin and composition of 11/`Oumuamua

Jackson A.P., Tamayo D., Hammond N., Ali-Dib M., Rein H., 2018, Monthly Notices of the Royal Astronomical Society Letters, 478, 49

- 21. Dynamical and biological panspermia constraints within multi-planet exosystems Veras D., Armstrong D.J., Blake J.A., Gutiérrez-Marcos J.F., Jackson A.P., Schäeffer H., 2018, Astrobiology, 9, 18
- *22. Constraints on the pre-impact orbits of Solar System giant impactors* Jackson A.P., Gabriel T.S.J., Asphaug E., 2018, Monthly Notices of the Royal Astronomical Society, 474, 2924
- 23. The Taurus boundary of stellar/sub-stellar (TBOSS) survey II: Disk masses from ALMA continuum observations Ward-Duong K., Patience J., Bulger J., van der Plas G., Menard F., Pinte C., Jackson A.P., Bryden G., Turner N.J., Harvey P., Hales A., de Rosa R.J., 2018, Astrophysical Journal, 155, 54
- 24. How to design a planetary system for different scattering outcomes: giant impact sweet spot, maximising exocomets, scattered disks

Wyatt M.C., Bonsor A., Jackson A.P., Marino S., Shannon A., Monthly Notices of the Royal Astronomical Society, 2017, 464, 3385

- Gas and dust around A-type stars at tens of Myr: signatures of cometary breakup Greaves J. S., Holland W. S., Matthews B. C., Marshall J. P., Dent W. R. F., Woitke P., Wyatt M. C., Matrà L., Jackson A.P., Monthly Notices of the Royal Astronomical Society, 2016, 461, 3910
- 26. *The spherical Brazil nut effect and its significance to asteroids Perera V., Jackson A.P., Asphaug E., 2016, Icarus, 278, 194
- Insights into planet formation from debris disks: II. Giant impacts in extrasolar planetary systems Wyatt M.C., Jackson A.P., in The disk in relation to the formation of planets and their proto-atmospheres, eds. Falanga M., Rodrigo R., Blanc M., Lammer H., International Space Science Institute – Beijing, 2016, also at Space Science Reviews, 2016, 205, 231
- Eight billion asteroids in the Oort cloud Shannon A., Jackson A.P., Veras D., Wyatt M.C., 2014, Monthly Notices of the Royal Astronomical Society, 446, 2059
- Debris from giant impacts between planetary embryos at large orbital radii
 Jackson A.P., Wyatt M.C., Bonsor A., Veras D., 2014, Monthly Notices of the Royal Astronomical Society, 440, 3757
- Molecular Gas Clumps from the Destruction of Icy Bodies in the β Pictoris Debris Disk Dent W.R.F., Wyatt M.C., Roberge A., Augereau J.-C., Casassus S., Corder S., Greaves J.S., de Gregorio-Monsalvo I., Hales A., Jackson A.P., Hughes A.Meredith, Lagrange A.-M., Matthews B., Wilner D., 2014, Science, 343, 1490
- *31. Debris from terrestrial planet formation: the Moon-forming collision* **Jackson A.P.**, Wyatt M.C., 2012, Monthly Notices of the Royal Astronomical Society, 425, 657
- *32. Planetary evaporation by UV & X-ray radiation: basic hydrodynamics* Owen J.E., **Jackson A.P.**, 2012, Monthly Notices of the Royal Astronomical Society, 425, 2931
- *33.* The coronal X-ray-age relation and its implications for the evaporation of exoplanets **Jackson A.P.**, Davis T.A., Wheatley P.J., 2012, Monthly Notices of the Royal Astronomical Society, 422, 2024

OTHER PUBLICATIONS

- The Chicxulub impactor: comet or asteroid? Desch S.J., Noviello J.L., Jackson A.P., Anbar A., 2021, Astronomy & Geophysics, 62, 3.34-3.37
- M-stars are fast and neat and A-stars are slow and messy at late-stage rocky planet formation Lisse C.M., Jackson A.P., Wolk S.J., Snios B.T., Desch S.J., Unterborn C., Patel R.I., Owen J.E., Panic O., 2019, Research Notes of the American Astronomical Society, 3, 90

PUBLIC OUTREACH

ACTIVITIES

2017	Speaker and guide for Canada 150 UTSC Solar Walk
2010-2014	Assistant at Institute of Astronomy public observing evenings
2011, 2012	Demonstrator at annual Cambridge University Science Festival
2011-2014	Member of the Institute of Astronomy Ask-an-Astronomer team

PUBLIC TALKS

Date	Title	Venue/Organisation	Audience
Oct 2021	Formation of the Planets and Solar system	Lecture for Arizona Museum of Natural History course, joint with Jessica Noviello	Online
Aug 2021	To see a world in a shard of ice	National Space Society, Phoenix	Online
Sep 2020	Formation of the Planets and Solar system	Lecture for Arizona Museum of Natural History course, joint with Jessica Noviello	Online
May 2018	'Oumuamua, our first interstellar visitor	North York Astronomical Association	Audience 40
Mar 2018	Making the Moon	Royal Astronomical Society of Canada, Mississauga Centre	Audience 150
Oct 2017	Solar System Origins	Royal Canadian Institute for Science event: The Planets, a Musical Odyssey of Evolution, Environment and Exploration	Audience 200
Jul 2017	150 years of Solar System astronomy	UTSC, Toronto Canada Day Solar Walk	Audiences 150-180
Nov 2013	Views of Venus	Institute of Astronomy, Cambridge Public observing evening	Audience 170